HOME WORK IV, HIGH-DIMENSIONAL GEOMETRY AND PROBABILITY, SPRING 2018

Due March 13. All the questions marked with an asterisk(s) are optional. The questions marked with a double asterisk are not only optional, but also have no due date.

Question 1. Show that if $2<p<q<\infty$, then

$$
d_{B M}\left(B_{p}^{n}, B_{q}^{n}\right)=n^{\frac{1}{p}-\frac{1}{q}} .
$$

Hint 1: Use Holder's inequality for upper bound;
Hint 2: Use the result about the distance between the ball and the cube, along with the multiplicative triangle inequality for the Banach-Mazur distance, to get the estimate from below.

Question 2. Show that when K and L are symmetric, then

$$
\inf _{x \in \mathbb{R}^{n}, T \in G L_{n}}\{\lambda>0: K \subset T L+x \subset \lambda K\}=\inf _{T \in G L_{n}}\{\lambda>0: K \subset T L \subset \lambda K\} .
$$

Question 3. Modify the proof of John's theorem to conclude that the distance between the euclidean ball and any convex body in \mathbb{R}^{n} (not necessarily symmetric) does not exceed n.

Question 4. Show that $d_{B M}(K, L)=d_{B M}\left(K^{o}, L^{o}\right)$.

Question 5*. Show that the Banach-Mazur distance between the simplex and the ball is n.

Question $6^{* *}$. Note that Question 3, together with the "triangle" inequality for BanachMazur distance, implies that for any pair of convex bodies K and L (not necessarily symmetric), $d_{B M}(K, L) \leq n^{2}$. Find any way to improve this estimate.

